Vortex Rings

Bubble Rings - Abstract Geometric Art Digital 3D Fractal Render in Chaotica.
Bubble Rings – 3D Fractal

Another 3D fractal generated in Chaotica 2. This uses depth_sin2 to add depth blur around the outer edges of the image. Bubble Rings are vortex rings that occur underwater when air occupies the core of the vortex.

More Vortex Rings and Bubbles

Chaotica XML

Paste this XML into Chaotica to generate your own vortex (bubble rings):

825 1488 3 1 1 strong 0.33 0.33 4 4 0.03 0.05 0.05 1 false 1.59 1.54 false 2.803 0 0 0.28787878 0.45959598 0.75 1 0 0.20707071 0.6161616 0.75 1 1 1 0 0 0 1 1 0 0 0 0 0.25 0.5 0.67171717 1 0 0.25 0.5 0.8484849 1 1 0 0 1 0 1 0 0 1 0 0 0.25 0.46969697 0.75 1 0 0.25 0.54545456 0.75 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 4.4 0 0 28 0 5 90.74021436465043 5 2.119225037257824 1.9284649776453056 linear 1 -63.64947281873698 1 27.7364847667792 1 -0.7866619937672352 -0.30359238285054374 mobius 1 -0.4174999480004095 0.9462812492317902 0.8482914750114965 -0.627328846210214 0.25881511589198875 0.7769885003088803 0.9318258392705856 -0.136480021402197 radial_gaussian 0.1705977672148158 2.547406265749422 curl 0.7393543518677871 -0.0587214988269853 0.49639386952810227 mobius 1 0.9318258392705856 -0.136480021402197 -0.8482914750114965 0.627328846210214 -0.25881511589198875 -0.7769885003088803 -0.4174999480004095 0.9462812492317902 0.8259702592799055 0.22238812529996882 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -32.121534481745755 1 58.667125986520084 1 0.5040796225403857 0.3115190557028612 mobius 1 -0.658115530347335 -0.20871272902160648 0.10975285478059973 0.995327452929855 0.6463654982847545 -0.7104669692297302 0.7440305296801423 0.7451771966562938 curl 1.6029295642498682 0.5396704339001017 0.12483591133710803 mobius 1 0.7440305296801423 0.7451771966562938 -0.10975285478059973 -0.995327452929855 -0.6463654982847545 0.7104669692297302 -0.658115530347335 -0.20871272902160648 0.47693505788529067 0.0721941352908324 1 ¨C11C 1 1 1 1 1 1 1 1 1 90 1 180 1 -0.41430700447093893 0.6169895678092399 mobius ¨C12C curl ¨C13C mobius ¨C14C depth_sine2 ¨C15C 0.7017090025766106 0.001053856012006916 1 ¨C16C 1 1 1 1 1 1 1 1 1 79.29913634522296 0.9999999999999999 175.61278747161177 1 -0.09125593690313122 -0.24730061518929258 mobius ¨C17C spherical ¨C18C curl ¨C19C mobius ¨C20C 0.725945118130385 0.188373027599 1 ¨C21C 1 1 1 1 1 1 1 1 1 155.36876627794598 1 -99.14623157708122 1 -0.05484364351586138 -0.6082788225152191 mobius ¨C22C bubble ¨C23C spherical ¨C24C radial_gaussian ¨C25C curl ¨C26C mobius ¨C27C 0.5281960901219288 0.948189752337 1 ¨C28C 1.2 1 1 1 1 1 1 1 1 -36.14789905415026 1 55.92595234162658 1 0.08023212322592244 0.7687275164003877 mobius ¨C29C bubble ¨C30C spherical ¨C31C sinusoidal ¨C32C mobius ¨C33C 0.13690334558505204 0.6554170117909921 1 ¨C34C 1 1 1 1 1 1 1 1 1 180 1 -90 1 -0.6360776521696782 -0.07190615948814534 mobius ¨C35C curl ¨C36C mobius ¨C37C depth_sine ¨C38C 0.7047038847553946 0.3653279938170453 1 ¨C39C 1 1 1 1 1 1 1 1 1 ¨C40C

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.